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About this project

This project was supervised by Evangelos Kobotis. There were
weekly zoom meetings in which we went over theoretical points,
set goals and discussed our results.

Motivation

The general purpose of this project was to serve as an introduction
to programming as well as the theory of prime numbers. Our
main goal was to identify large prime numbers and to go over the
different means of testing primality.

Methodology

During our meetings everyone was engaged, bringing new ideas,
discussing their successes and failures with the assignments of the
previous week, volunteering for the new tasks or giving sugges-
tions for different directions. The role of this presentation is to
summarize some of the work that we did. In many cases we took
code segments from the web but overall the code and results that
we generated were our own work. We made every effort to give
credit to our outside sources.

Starting with an ancient algorithm

Exploring the properties of the set of prime numbers is one of the
most fascinating and difficult tasks in mathematics. We began by
looking over an ancient algorithm that theoretically produces all
prime numbers.

This is the Eratosthenes sieve and it is based upon the fact that
every composite natural number is divisible by a prime number
that does not exceed its square. Indeed if n is composite, then
it can be written as ab where a and b are natural numbers greater
than 1. If a≥ b, then b2≤ n and if p is any prime number dividing
b then p2 ≤ n or p≤

√
n.

This simple property has the following implication. If we start
with the set:

{1,2,3, . . . ,k2}

and we strike out 1 and all the numbers that are divisible by primes
not exceeding k, then the numbers that are left behind are pre-
cisely the primes that are between k and k2. In other words, if we
know the primes that are less than k then we can easily find the
primes that are less than k2. More concretely, if we begin with the
primes 2,3,5,7 that are precisely the primes that do not exceed
10, then we can easily find the primes that do not exceed 100.
Once we can accomplish that, then we can easily find the primes
not exceeding 10,000 and so on. We did find 5,761,455 primes
less than 108.

Fermat’s Theorem

Fermat’s theorem states if p is prime then, for any integer a, the
number ap−a is an integer multiple of p.
This can also be stated as:

ap−1 ≡ 1 (mod p)

The above symbol is a congruency symbol. Two numbers are
congruent if, when divided by the same number, they have the
same remainder.
To use this test we first pick an arbitrary integer a. We then raise
a to the n−1 power and divide by n. If the remainder is 1, then n
is prime.
It is important to note this test is probabilistic, meaning, that not
all numbers found using this test are prime. Primes found with
this method require additional testing to be considered prime.
While this test is not deterministic, the simplicity of it allows for
fast run times, making it a valuable method of sieving out com-
posite numbers.

The Prime Number Theorem

The Prime Number Theorem was conjectured by Carl Friedrich
Gauss and Jean-Marie Legendre. In modern terms, it states that if
we set π(x) = #{p prime : p≤ x} then

lim
x→∞

π(x)
x/ logx

= 1

For 108 we get to get 5,761,455 prime numbers and the Prime
Number Theorem predicts 5,428,681 primes.

For 108 + 106, we get 5815663 prime numbers while the Prime
Number Theorem predicts 5480007 primes

Trivial and Accessible Range

Our first task was to produce a list of prime numbers under 108.
We were able to produce this list using a classical method, the
eratosthenes sieve. We have denoted these numbers under 108 as
the trivial range because the primes in this range can be quickly
identified using the before mentioned eratosthenes sieve. We con-
sider numbers from 108 to 1016 to be the accessible range because
these primes can be found in a reasonable run time by eliminating
the multiples of the primes found in the trivial range.

Numerical results in the accessible range

Let’s begin by taking a look at the interval [1010,1010+106]. The
prime number theorem projects that there are going to be 43,429
primes in this range. We begin by sieving out all the multiples of
primes in the trivial range (recall that the trivial range consists of
all numbers up to 108). Then we find 43,427 primes: a number
which is suprisingly close to what is predicted by the Prime Num-
ber Theorem. If we repeat this in the interval [1011,1011 + 106]
then we find 39,434 primes compared to 39,484 primes that are
predicted by the Prime Number Theorem.

Prime Numbers beyond the accessible range

We combine everything that we’ve learned in our research in order
to be able to find prime numbers beyond the accessible range.
(1016).

We start off similar to how we would when we find primes within
the accessible range. We sieve out all composite numbers within
the trivial range, leaving only prime numbers that are < 108. We
then select a smaller range from beyond the accessible range and
sieve out any multiples of the trivial primes. This is the same as
we did when we selected a smaller range from within the acces-
sible range. The difference here is that any numbers from within
this smaller range, that were not sieved out by the trivial primes,
can not be considered prime just yet. This is because, as explained
by the Eratosthenes Sieve, the trivial primes will only be able to
perfectly sieve out composite numbers up to (108)2, which is how
we got 1016 as the end of our accessible range in the first place. So
there could be prime numbers that are not multiples of any trivial
primes at this point.

These numbers found beyond the accessible range, that were not
sieved out, are considered probable primes. We now implement
the other tests we’ve discussed. We first use the Miller-Rabin test.
We choose one of the probable primes, n, and perform the Miller-
Rabin test. If it fails then n is determined to be composite. If it
passes, then n is considered a strong probable prime.

We then take this probable prime, n, and perform the AKS test,
step by step. We perform step 1, to determine whether n is a
perfect power. If n is a perfect power, it is determined to be com-
posite, if not, move on to step 2. We perform step 2 to find the
smallest integer, r, such that the multiplicative order of n modulo
r > (log2 n)2. We skip steps 3 and 4 because as explained earlier,
they are rather useless for our research purposes. We move on to
step 5 and if n passes this step, n can now be determined to be a
prime number.

Examples of prime numbers we have found using this method:
I 13,666,666,666,666,613
I 19,019,684,767,739,993
I 22,222,223,333,355,757
I 44,444,446,666,688,899
I 99,999,999,999,899,999
I 1,000,000,000,000,000,003

Miller-Rabin test

The Miller-Rabin test is also probabilistic and it is based on the
following process. We have a number n and we consider a number
a which is coprime to n. We then write n− 1 = 2sm, where m is
an odd number. We then test to see if the numbers

am,a2m, . . . ,a2sm

are all equal to 1 with the possible exception of the first one that
could be -1. If this is the case, then the test is passed by n and it
has a strong probability to be a prime number.

The Fibonacci test

The Fibonacci test is conjecturally deterministic, meaning, while
there is no formal proof that the numbers found with this method
are prime, it has never produced a composite number. Therefore
we can assume with high probability that the numbers found using
this method are prime. The test states that if n is prime then:

Fn−(5
n)
≡ 0 (mod n)

First we compute (5
n). This is done by computing n (mod 5). If

n (mod 5) = 1, then the function outputs 1. If n (mod 5) = 0
then the number is composite. If n (mod 5)≥ 2 then the function
outputs 0.
Next we compute Fn−(5

n)
. In order to do this we must generate the

sequence of fibonacci numbers up to the n−(5
n) term and take this

number to be Fn−(5
n)

.
Finally we divide Fn−(5

n)
by n. If Fn−(5

n)
is divisible by n, then n is

prime.

The AKS Primality test

The AKS test, unlike the Miller-Rabin test, is deterministic. How-
ever, it is very complex and lengthy. Because of this, the AKS test
is the last step we take for finding primes that are beyond the ac-
cessible range. It consists of a total of 5 steps.

Step One: Check if probable prime, n is a perfect power. In
other words, is n = ab ? If this is true, then n is determined to be
composite, otherwise, n remains a probable prime and we move
to step two.

Step Two: Find the smallest integer, r, such that ordr(n) >
(log2(n))

2. Here ordr(n) is the multiplicative order of n modulo
r. The multiplicative order of n modulo r is the smallest positive
integer, k, such that nk ∼= 1( mod r). This integer, r that we find
in this step will be used in the next steps

Step Three: For all a such that 2 ≤ a ≤ min(r,n−1) check that
a does not divide n. If a number a is found to divide n, then n is
composite. Otherwise, move to step four.

Step Four: Check if n≤ r. Just like step three, this step is trivially
correct. r is expected to be significantly less than n, so we do not
expect any of the large probable primes we deal with to fail this
test

Step Five: For, a = 1 to b
√

φ(r) log2(n)c, check if (X + a)n 6=
Xn + a(modXr− 1,n). Here, φ(r) is known as Euler’s theoretic
function, it is the total number of integers, which are less than r,
that are coprime (have a greatest common divisor equal to 1) to
r. Floor simply means to round down to the nearest integer. X
is simply a variable, making the above expression a polynomial.
If the above expression is found to be true, then n is determined
to be composite. Otherwise, we can finally determine that n is
indeed prime.
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