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About this project

This project was supervised by Evangelos Kobotis. There were
weekly zoom meetings in which we went over theoretical points,
set goals and discussed our results.

Motivation

The general purpose of this project was to explore the theory of
prime numbers through a series of numerical experiments. Our
main goal was to identify large prime numbers and to go over the
different means of testing primality.

Elementary approach and choice of range

Our first task was to produce a list of prime numbers. To this end
we came up with all prime numbers that do not exceed 108. This
can be achieved by using quite classical means in a very small
amount of time. This allowed us to start a further programming
task by generating the primes in this range and then manipulating
them as desired. In this way we were able to look for special kinds
of primes, analyze their distribution and in general get acquainted
with the speed that it takes to solve numerical problems like this
in the range that we ended up referring to as the trivial range.

Our intention was to move outside the trivial range and explore
things beyond its confines. By having all prime numbers within
our trivial range we were able to find prime numbers in what we
called the accessible range. This is the range of numbers that
do not exceed 1016. In particular we were able to easily exam-
ine ranges consisting of 106 numbers and determine all of their
primes.

Additional exploration

Simultaneously we sought to connect our results with theoretical
facts such as those provided by the Prime Number Theorem. In
particular we were able to compare the amount of prime numbers
in a given range by those projected by the Prime Number Theo-
rem. We were always conscious about the approximate nature of
such a comparison but it turned out that our computations were
consistent with everything that the theory predicted.

Methodology

During our meetings everyone was engaged, bringing new ideas,
discussing their successes and failures with the assignments of the
previous week, volunteering for the new tasks or giving sugges-
tions for different directions. The role of this presentation is to
summarize some of the work that we did. In many cases we took
code segments from the web but overall the code and results that
we generated were our own work. We made every effort to give
credit to our outside sources.

Starting with an ancient algorithm

Exploring the properties of the set of prime numbers is one of
the most fascinating and difficult tasks in mathematics. We began
by looking over an ancient algorithm that theoretically produces
all prime numbers. This is the Eratosthenes sieve and it is based
upon the fact that every composite natural number is divisible by
a prime number that does not exceed its square. Indeed if n is
composite, then it can be written as ab where a and b are natural
numbers greater than 1. If a≥ b, then b2≤ n and if p is any prime
number dividing b then p2 ≤ n or p≤

√
n.

This simple property has the following implication. If we start
with the set:

{1,2,3, . . . ,k2}
and we strike out 1 and all the numbers that are divisible by primes
not exceeding k, then the numbers that are left behind are pre-
cisely the primes that are between k and k2. In other words, if we
know the primes that are less than k then we can easily find the
primes that are less than k2. More concretely, if we begin with the
primes 2,3,5,7 that are precisely the primes that do not exceed
10, then we can easily find the primes that do not exceed 100.
Once we can accomplish that, then we can easily find the primes
not exceeding 10,000 and so on. We did find 5,761,455 primes
less than 108.

The Prime Number Theorem

The Prime Number Theorem was conjectured by Carl Friedrich
Gauss and Jean-Marie Legendre. In modern terms, it states that if
we set:

π(x) = #{p prime : p≤ x}

then lim
x→∞

π(x)
x/ logx

= 1.

Primality testing

Finding large prime numbers is one of the main goals in the theory
of prime numbers. Here we apply a simple-minded search based
on several theoretical results that we mention below. There are
several primality tests. Some of them are probabilistic. Other
are deterministic. Probabilistic primality tests identify numbers
that have a strong probability of being prime. Deterministic tests,
prove, when certain conditions are satisfied, that a given number
is prime.

For some of this tests, it is useful to know Fermat’s little theorem
according to which if p is prime then for any integer a not divisible
by p, we have:

ap−1 ≡ 1 mod p

This means that if we have a number n for which the congruence:

an−1 ≡ 1 mod n

Primality testing (continued)

is wrong for a given a that is coprime to n, then it cannot be a
prime number. On the other hand, if this is correct for a given a
which is coprime to n, then this may make us hope (but certainly
not decide) that n is prime. In fact this is the content of the Fermat
Primality Test. One chooses a number a less than n and tests the
equality an−1≡ 1 mod n. If it is true then we think of n as having
some probability of being prime.

The Miller-Rabin test is also probabilistic and it is based on the
following process. We have a number n and we consider a number
a which is coprime to n. We then write n− 1 = 2sm, where m is
an odd number. We then test to see if the numbers

am,a2m, . . . ,a2sm

are all equal to 1 with the possible exception of the first one that
could be -1. If this is the case, then the test is passed by n and
it has a strong probability to be a prime number. At this point,
it should be noted that the Miller-Rabin test is, in fact, determin-
istic as long as the Generalized Riemann Hypothesis is correct.
From this perspective, and if one believes this hypothesis, then
the Miller-Rabin test can be used as a deterministic test.

We however explored another test which is known to be determin-
istic. This is the Agrawal-Kayal-Saxena primality test, known as
the AKS primality test. It is based upon the fact that for a natural
number n > 1 and a coprime to n, then the polynomial relation:

(X+a)n ≡ Xn+a mod n
is true. This can be thought of as a relation in the polynomial ring
Z/nZ[X].
Finally, it is conjectured that the following test is deterministic. If
n is natural number satisfying:

I 2n−1 ≡ 1 mod n
I Fn+1 ≡ 0 mod n

then n is a prime number. Here Fn+1 is the n+ 1-th term of the
Fibonacci sequence defined by F0 =F1 = 1 and Fn+2 =Fn+1+Fn.

Numerical results in the accessible range

Let’s begin by taking a look at the interval [1010,1010+106]. The
prime number theorem projects that there are going to be 43,429
primes in this range. We begin by sieving out all the multiples of
primes in the trivial range (recall that the trivial range consists of
all numbers up to 108). Then we find 43,427 primes: a number
which is suprisingly close to what is predicted by the Prime Num-
ber Theorem.

If we repeat this in the interval [1011,1011 + 106] then we find
39,434 primes compared to 39,484 primes that are predicted by
the Prime Number Theorem. Note that the proportion of primes
is decreasing as we go further into larger and larger numbers.

Moving further

In the accessible range (below 1016), things can be done in a rather
straightforward way by very elementary means. The question is
what happens when we go much further. Let’s take a look at the
interval [1050,1050+105].

We have 100,000 numbers to test in this range. We start by strik-
ing out all the numbers that are multiples of primes that do not
exceed 108. This leaves us with 4,064 numbers.

We next use the Fermat primality test and strike out almost 90% of
the above numbers to come up with 895 numbers that have a good
probability of being prime numbers. In other words we have less
than 1% of the numbers we started up with. This is a manageable
amount of numbers to which we can apply further tests including
the conditionally deterministic Miller-Rabin test. This allows us
to bring the number down to 452. These 452 numbers pass all the
different primality tests and give us the final amount of primes
in the range that we considered. Note that it takes a little over
a minute to run these computations. One should note here that
throughout our project we tried to keep the computations as short
as possible.

By going even further, we do the same thing in the range
[10400,10400 + 105], dealing with some seriously large numbers.
It comes as an initial surprise that the initial sieving produces
4,055 numbers that have some probability of being primes. This
is an amount that is almost equal to what we found at a much
smaller range. The reason this might be at first surprising is be-
cause we know that prime numbers do become more and more
scarce. However we do not improve on the set of primes by which
we are sieving and therefore we should not expect any particular
improvement on the amount of numbers that we strike out this
way. It is in fact true that we found about 4,000 numbers in every
range of length 100,000 where we applied this sieve.

What however becomes much more interesting (and consistent
with theoretical expectations) is the fact that the subsequent tests
strike out significantly more numbers. In fact we are left with 66
numbers that are prime. 66 numbers out of 100,000 consecutive
numbers are prime. This process takes about 8 minutes and the
larger prime that is produced this way is the number:

10000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000041977

which is actually the largest prime number that we found with
our computations. Allowing more computation time, would have
enabled us to go even further. However it is already impressive
that our simple-minded techniques took us to computations that
would have been impossible only a short period of time ago, let
alone that it takes only a few minutes to complete.

Looking back at our journey in this project, one can easily come
up with future goals that involve more precise computations in
higher number ranges along with comparisons to theoretical data.

https://murl.uic.edu/


