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Summary

In this project, we have dealt with Laplace’s Equation to study the
temperature distribution on a 10×5 meter rectangular plate with
its walls subject to constant temperatures (Dirichlet Boundary
Conditions) as well as insulated boundaries (Neumann Boundary
Conditions).
Keywords: Laplace’s Equation, Central Difference Method,
Dirichlet Boundary Conditions, Neumann Boundary Conditions

Motivation

Second order partial differential equations model a plethora of
physical processes and phenomena. Solving Laplace’s equation
has not only applications in thermal physics, but in electrostatics
to model potential through a finite region, or in fluid mechanics
to idealize flow.

Statement of the Problem

In the study of heat conduction, Laplace’s Equation describes
steady-state two dimensional heat transfer. The solution to the
equation, u, gives the temperature distribution of a rectangular
region that does not change with time.

Laplace’s Equation states

∇
2u =

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0

The edges of the rectangular region are first subject to Dirichlet
Boundary Conditions. This means that each edge is held at a
constant temperature. Based on the wall temperature, the solution
u(x,y) to Laplace’s Equation in the domain is required to satisfy
the boundaries shown below:

How It Works - Direchlet Boundary

In the Laplace’s Equation, the forward and backward approxima-
tions extend outside the boundaries and cannot be used. So the
second-order central difference method can be used to approxi-
mate the partial derivatives.

▶ Set ∆x = ∆y, and then make the grid.
▶ We know the Boundary Conditions, so set them
▶ Use ”guess value” of interior grid
▶ Iterate the equation until the difference between value before

and after the iteration is small enough using Central Finite
Difference Method

Finite-Difference Approximations

There are three ways to discretize Laplace’s Equation:
▶ Second-Order Forward Finite Difference

ui,j =
2ui+1,j+2ui,j+1−ui+2,j−ui,j+2

2
▶ Second-Order Backward Finite Difference

ui,j =
2ui−1,j+2ui,j−1−ui−2,j−ui,j−2

2
▶ Second-Order Central Finite Difference

ui,j =
ui+1,j+ui−1,j+ui,j+1+ui,j−1

4

Math

Starting with ∆u, we must discretize each partial derivative in the
x and y directions.

(
∂ 2u
∂x2)i,j ≈

ui+1,j−2ui,j+ui−1,

(∆x)2

(
∂ 2u
∂y2)i,j ≈

ui,j+1−2ui,j+ui,j−1

(∆y)2

Adding the two together gives

(
∂ 2u
∂x2)i,j+(

∂ 2u
∂y2)i,j ≈

ui+1,j−2ui,j+ui−1,j

(∆x)2 +
ui,j+1−2ui,j+ui,j−1

(∆y)2 = 0

Math

Since ∆x = ∆y, the denominators can be eliminated

ui+1,j+ui−1,j+ui,j+1+ui,j−1−4ui,j = 0
Solving for ui,j gives

ui,j =
ui+1,j+ui−1,j+ui,j+1+ui,j−1

4

Thus, the central difference method approximation for the two
dimensional heat equation is the average of the points surround-
ing the point being calculated.

The numerical method can be compared to an exact analytical
solution to the Direchlet problem.

∞

∑
n=1

An sin(µnx)sinh(µny)+
∞

∑
m=1

Bm sinh(λmx)sin(λmy)

µn =
nπ

a
,λm =

mπ

b
,An =

480
nπ sinh(nπb

a )
,n = 1,3,5...

and Bm = 160
nπ sinh(nπa

b )
,m = 1,3,5...

Numerican Solution- Direchlet Boundary Conditions

Laplace’s Equation with Neumann BC

We also solved a Laplace’s Equation with Neumann Boundary
Conditions for x = 0 and y = 0.

How it works - on a Neumann BC

To figure out the values at x = 0 and y = 0, we set negative ghost
boundaries outside the physical domain to express the derivative
at the boundary.

▶ We got the equation u−1,y = u1,y and ux,−1 = ux,1 as
uy(x,−1) = ux(−1,y) = 0.

▶ Using the central difference method, calculate the values at
x = 0 and y = 0

▶ Represent the complete discretized equation for the problem as
a matrix

Result - on a Neumann BC

Conclusions

▶ Laplace’s equation describes two dimensional heat transfer
▶ The central difference method for second order derivatives is

used to approximate the partial derivatives.
▶ If ∆x = ∆y, then each point in the grid is simply the average of

the points surrounding it.
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