
GAMES AND PROGRAMMING part I
Aaqel Shaik Abdul Mazeed, Abeer Fatima, Ahmed Shah, Jamie Hayes, Joshua Samuel, Moe Hishmeh,

Nada Adzic Vukotic, Samuel Effendy, Syed Hussain, Umar Chaudhry, Vincent McNulty, Vira Kasprova
University of Illinois at Chicago

About this project

This project was supervised by Drew Shulman and Evangelos
Kobotis. The students were divided into groups and they worked
separately on different games. During the meetings, all the differ-
ent games and pieces of code were discussed.

Games and Computer Programming

Since the early programming days, there has always been a vivid
interest of the scientific community of teaching machines how to
play games. The first attempts were rather primitive and it took
a while before machines were able to compete with humans as
equals. Those days are long gone and through the advances in
Computer Science and Artificial Intelligence, we have reached a
point that machines dominate humans in an overwhelming way.
The purpose of this project was to introduce the students to how
different games are programmed so that they can be played by
computers.

Parametrizing a game

One of the preliminary steps needed in the process of developing
programs that can play games, is to translate a game into mathe-
matical data that can be processed. For any particular game there
is a multitude of ways to achieve this and sometimes it is a trial-
and-error process to choose the parametrization that works best.
Most games use a coordinate space of a certain dimension and a
game can be described as a sequence of collections of vectors in
that space.

Decision Trees

Given the current state of a game, the next player has a certain
number of moves they can explore. This exploration leads to dif-
ferent states of the game, visualized as a tree. Each branch of the
tree leads to a different state of the game, and the deeper this tree
can be traversed, the further ahead in the game we can see. This
tree is called a decision tree.

Minimax Algorithm

If we assume we are playing against an optimal player, then an
algorithm used to make the best possible decision against said
player is the Minimax algorithm. This algorithm searches the
tree and tries to maximize the current player’s score, assuming
the optimal player chooses their move to minimize the current
player’s score. We studied the Minimiax algorithm for a “small”
game like tic-tac-toe, but this algorithm is infeasible for larger
games where the decision tree has a “large branching factor,”
which means the tree is too large to keep track of even on a com-
puter.

Neural Networks

Before we discuss the role of artificial intelligence in game pro-
gramming, it would be a good idea to discuss the concept of a
neural network. A neural network can be thought of as consist-
ing of a series of layers of neurons - each neuron can be thought
of as a container of a numerical quantity. There are connections
between the neurons that are determined by different parameters.
The general idea is to determine optimal values for these parame-
ters so that by identifying the numerical values of the first layer, to
obtain the numerical values for the last layer in a way that a par-
ticular problem is solved. Initially one does not know what those
parameters are. By an initial guess and continuous adjustments
that are based on instances of the problem where the answer is
known, optimal or near-optimal values for these parameters are
reached. Once this is accomplished one can use a neural network
in order to obtain answers to a given question that is parametrized
by the given neural network.

Q-learning

Another training algorithm we implemented was Q-learning. The
Q stands for “quality”, and the idea behind Q-learning is to sim-
ulate games and reward good moves and punish poor moves, and
then learn from those rewards. The first step is to simulate a game
and decide if the outcome of the game was a win or a loss. If it
was a win, then we would reward the player for the moves that
generated the win, and if it were a loss, then it would punish the
moves it made. Each move resulted in a state of the game, and
that state was remembered (hashed) so when simulating further
games, we could return to the hash and decide if the move is new
or old and try to learn from it.

Tic Tac Toe

In general, there are three types of machine learning methods;
First, the Supervised Learning Method which is more based off of
a more task driven approach, examples include classification and
regression analysis. Second, the Unsupervised Learning Method,
which takes advantage of data driven methods to make infer-
ences, examples include clustering methods. Lastly, the Rein-
forcement Learning Method, which learns from mistakes and im-
proves the outcome. After careful study and trial/error, Reinforce-
ment Learning was the method we used for our game. The ob-
jective was to create a game that can be played to win in as few
moves as possible, both from making the first move (player 1) and
making the second move (player 2). We used basic object oriented
programming by creating a 9 square matrix, where zero repre-
sents an open space, -1 represents ‘O’, and 1 represents ‘X’. We
also utilized a derivation of Reinforcement Learning called the
Incremental Learning method, (similar to reinforcement learning
except when new data is presented, our model adjusts), because
it gives us the better outcome in winning while being player 1
and player 2. The difficulty was generating and formatting the
data to train our models, as well as labeling our data from unfin-
ished games. It was challenging because it was difficult to qual-
ify a model’s decision when the outcome is unknown. To fix this
problem, Incremental Learning Methods with parameter tuning(s)
were used to get our game to work correctly.

1. Agent competes against random moves until completion of
match

2. Results of the math are used to update the State Data
(a) If agent wins, each move made is given +1 points
(b) If agent loses or draws, each move made is given −1 points

3. Data is generated to incrementally train the agent
(a) A matrix of all the game states seen during the iteration is generated to

be used as features
(b) A lookup into State Data is conducted to find the moves associated with

each game state that have historically have the best performance. These
moves are converted into a vector to be used as labels.

(c) The features and labels are passed to the agent for partial fitting

4. The agent’s parameters have been updated to perform better.

The results were as follows: Random player vs Random Player
was on average 92%. Trained Player vs Random Player was on
average 92%. Finally, Trained player vs Trained player was 99%.
After applying these methods, I believe that Incremental Learning
is the key to building these models, and additionally, including de-
cision trees with incremental learning may improve the outcome
of this game to win at 99%.

Minesweeper

Minesweeper is a logic puzzle video game generally played on
personal computers. It first arrived on the scene in 1992 when it
was bundled with Windows 3.1 as Microsoft Minesweeper. Since
then, it has spawned many different variations, but the classic
game has remained iconic amongst Windows games, only being
removed as a pre-installed application with the release of Win-
dows 8, and later being published as a free game on the Microsoft
Store. Minesweeper features a grid of tiles, usually of 16x16 size,
with 40 mines to uncover. Each tile, when clicked, reveals the
number of mines around it. If the player clicks on a mine, they
lose the game. The aim is to flag all mines and uncover all tiles
that don’t contain mines. Minesweeper is a game with inherent
unpredictability. The random position of the mines in each newly-
generated game makes it hard to learn effective strategies to win.
For this reason, although possible, a traditional approach in re-
inforcement learning may produce less than desirable results for
a beginner. A more fruitful approach would be to hard-code the
actions to be taken by the agent, based on what it can learn from
the board through previous actions.

Game parameterization
Building on the base provided by Harvard CS50’s Introduction
to Artificial Intelligence with Python , we can parameterize the
game and represent our AI’s knowledge through ‘sentences’. Ev-
ery time a move is made, the board adds a new sentence to the
knowledge base and existing sentences in the knowledge base are
updated accordingly. If the agent is able to discern a tile as being
completely safe, it adds the tile to a list of safe moves to make
and removes it from every sentence in the knowledge base. If the
agent concludes that a tile has a mine underneath, it flags it and
removes it from every sentence in the knowledge base.
{(1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 2), (3, 3), (3, 4)} = 3
If a tile at (2, 3) is uncovered and it displayed a ‘3’, the sentence
above would be added to the knowledge base and existing sen-
tences would be updated.

Win/Lose conditions
The agent wins the game when there are no possible moves to
make and all mines have been flagged. As expected, the agent
loses the game when it clicks on a mine. As of now, the agent
wins the game roughly 45 - 55% of the time. The agent was told
to play 100 games with three different grid sizes: 8x8, 12x12, and
16x16. This experiment was repeated for each grid size thrice, to
get an average win rate of 53% for 8x8, 48% for 12x12, and 46%
for 16x16. We can attribute most, if not all these losses to one
factor: the random move.
The random move is taken when the agent runs out of safe moves
and the calculated moves all have the same probability. Unfor-
tunately, this is a consequence of the nature of the game itself.
Even with the inherent randomness, the agent performs very well
considering the information at its disposal.

https://murl.uic.edu/


