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Checkers

We were able to represent any board position by having an array
where each element represented one of the squares on the board.
We then filled any empty spaces with 0 and the rest with an in-
stance of a Piece class. Each piece has a color, position, and an is
King value. Now to allow the pieces to move we created a func-
tion to find the legal moves any piece could make we did this by
taking a piece and looking along both its diagonals to see if there
was anywhere it could move to. And if it happened to jump over
an opposing piece we would recursively call the function again to
allow double and triple jumps. We added a few more simple func-
tionalities such as king promotion, win detection, and a starting
position.

We used the Minimax algorithm initially. However, it’s important
to note that this method is only as effective as the scoring function
it uses, so after some trial and error this is my function:

(White Pieces - Red Pieces) + 0.2*(Possible White Moves - Pos-
sible Red Moves) + 0.5*(Development Score)

The Development Score is a function we made to encourage the
AI to move its pieces forward. It is the sum of the row numbers
of each piece and kings are worth 10, this incentivizes the AI to
push its pieces to the end and get kings. After all this, the AI
works quite well.

The next optimization is to add a Transposition Table. This is a
table of all the board positions that the AI has seen in the past, it’ll
then save that position’s best move and score at a certain depth of
search and return it when it sees this board position again. How-
ever since each board was saved as a Board object we need to find
a faster way to search and store these positions, so we created a
hash function.

We then simply had the AI play a random player over and over
again until it knows a large number of board positions. Currently,
it knows about 321,403 board positions. Both of these optimiza-
tions have allowed Minimax to easily look up to 5 moves ahead
while it used to struggle to look 3 moves ahead, on my machine.
It always beats a random player and never makes unintelligent
moves against trained players. The only problem is that it is slow,
so if we can optimize it not only will it be faster but it could look
more moves ahead.

Connect 4

After trying to find a machine learning algorithm to simulate
and train from games of Connect 4, we found the most success
through Q-learning. Before creating a Python program that uses
Q-learning, we wrote a starter program that would contain the
functions needed to play a game for Connect 4 such as a game
state evaluation function, and that program would allow for basic
simulations between random players and display results of those
simulations. Connect 4 is played through a game board, so we
parametrized this board as one Python list that would contain 6
lists, and each of those lists would contain 7 elements. This cre-
ates a 6x7 2-D Python list similar to a 6x7 Connect 4 board. As
humans, we can see pieces on the Connect 4 Boards as X’s and
O’s or Red’s and Blue’s, and we can parametrize those pieces
with numbers mapped to those human-readable values. In our
program, we parametrized an empty space as 0, an X piece as 1,
and an O piece as -1. Hence, when initializing the Python list
serving as a game board, all of the elements in the lists will be 0s.
The next step to simulate Connect 4 was to create functions that
found all the available moves for a player and evaluate the game
state. After all these functions were successfully programmed,
we was able to simulate games between random players and com-
pute some interesting results. After 10,000 games, player 1 won
55.41% of the time, player 2 won 44.33% of the time, and ties
occurred 0.26% of the time. From these results, one can see how
the first player to move has an advantage and ties are rare in the
case of two players playing randomly.

After random simulations, we implemented Q-learning. Eventu-
ally, the program was running successfully, and we experimented
by having two computers train with the Q-learning algorithm
by playing against each other for 10,000 games and then, one
of the trained computer players played against a random player
for 10,000 games. We wanted to gauge the effectiveness of
the Q-learning player by seeing how well it could defeat a ran-
dom player, and the results were that the Q-learning player won
86.35% of the time, the random player won 13.65% of the time,
and there were no ties. From these results, we can see that the
Q-learning player is in fact learning.

After this data was found, the program had the two trained Q-
learning players play against each other for 10,000 games. The
results were the first Q-learning player won 52.4% of the time,
the second player won 47.1% of the time, and there were 5 ties.

Othello

Othello is a perfect information game because every player is per-
fectly informed of every event in the game, including the initial-
ization of the board. It is also zero-sum, since every gained ad-
vantage of a player is equal to the gained disadvantage of their op-
ponent, e.g. every tile gained by a player is lost to another player.
Next, it is deterministic, because there are no random elements in
its rules. This game is a perfect testbed for reinforcement algo-
rithms like Q-learning, since there is a clear distinction between
reward and consequences as well as a numeric value for each ac-
tion to train the agent.

The board is initially empty but for the four center squares, which
feature discs on the two squares on the major diagonal ([4][4] and
[5][5]) and the two squares on the opposing diagonal, respectively
[4][5] and [5][4].

The player who moves first is referred to as “Black” and the player
who moves second is referred to as “White”. A disc must be
placed on an empty square in order for there to be a sequence of
one or more discs belonging to the opponent, followed by one’s
own disc, in at least one direction (horizontally, vertically, or di-
agonally) from the square played on. In such a series, the oppo-
nent’s discs are flipped and changed to one’s own color.

Othello’s state space has a maximum of 60 movements and a di-
mension of around 1028. Two players use 64 two-sided discs that
are black on one side and white on the other to play Othello on
an 8 by 8 board. The discs are placed on the board with the white
side up by one player and the black side up by the other player.

We chose to write our parameterization in Python due to its ac-
cessibility and library support for machine learning. To represent
the board in our version, we will utilize an 8 by 8 character ar-
ray. Instead of using black and white pieces, we will use Xs and
Os. The lower left corner is at coordinate [0][0], while the upper
right corner is at coordinate [7][7]. Since the rules for movement
in Othello are complicated, we broke the movements down into
three functions. The validMove() checks if the move is valid or
not. The move function takes as input the board, the XY coordi-
nate to place the piece, and the piece we are placing (X or O). If a
piece can be flipped in any of the eight directions and the space on
the board is unoccupied, the move is valid. We check all adjacent
cells to our current location by calling checkFlip() function for
left, right, down, up, down-left, down-right, up-left, and up-right.

Chess

Chess is the ultimate game that can appear as a challenge in the
context of game programming. Almost thirty years ago it was un-
fathomable to have machines that beat the leading players. Nowa-
days it is almost unfathomable to have any leading player that can
come close to what a machine can do. Not only machines can eas-
ily beat all humans - they have also changed the landscape of the
game completely. They have revealed strategies that were very
little contemplated before. They have answered questions that re-
mained open for a while. And the journey goes on as people try
to perfect the use of computers in learning, understanding and ap-
preciating chess.

Chess will be our exclusive goal of a similar project for next
semester. We will try to approach the subject of chess program-
ming from different angles and to produce interesting code from
scratch in many different directions. So the journey goes on...
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