
MACHINE LEARNING, CHESS and MATHEMATICS
Zain K Aamer Sravani Bhamidipaty Nirgun Goel Bill Shepelak Xuan Duc Tran Ling Yu

University of Illinois at Chicago

About this project

This project consists of work that was done under the supervision
of Andrew Shulman and Evangelos Kobotis at the MSCS Un-
dergraduate Research Laboratory. One of the main ideas of the
project was to begin from scratch, to understand how the game of
chess can be parameterized and eventually to consider different
research paths. The chosen research paths were followed by one
or more of the participants at a time, individually or in collabora-
tion.

The game of chess

Chess is a traditional board game that has been enjoyed by every-
one from kings and queens to schoolchildren and hobbyists. It is
frequently referred to as a game of strategy, skill, and patience. In
the sixth century AD, the game of chess was invented in India and
swiftly moved to Persia and eventually to the Islamic world. From
there, it traveled to Europe in the ninth century, where the nobil-
ity took a liking to it. Chess is now played across the world by
players of all ages and socioeconomic backgrounds. On a square
board with 64 squares organized in an 8x8 grid, chess is played.
A king, a queen, two rooks, two knights, two bishops, and eight
pawns are given to each player at the start of the game. The goal
of the game is to checkmate your opponent’s king, which means
trapping it so that it cannot escape capture.

Chess and computers

Looking back at the history of the game, chess computation is
something relatively new, dating back about 70 years ago. The
first chess program was created by Alan Turing and David Cham-
pernowne in 1948 and since then, we have developed chess pro-
grams that have become stronger as time has passed. In 1997,
Deep Blue, a chess-playing supercomputer, defeated Grandmas-
ter Garry Kasparov and becoming the first computer to beat a
world-champion chess player in a classic match format. Chess
program has never stopped developing and continues to improve,
surpassing humans by compute billions of scenarios within a sec-
ond. The highest-rated computer chess program, Stockfish, has
more than 3500 ELO now.

Chess parametrization

In our project, we have created a chess board using a Python
nested array. This involved generating eight arrays that corre-
sponded to the eight columns of a chess board, with each array
containing elements that represented individual squares on the
board. The chess pieces were represented by integer values We
have implemented a 6-digit Operation Code that allows users to
access and move the chess pieces. The first two digits indicate the
type of move (non-capture/capture, promotion, or castling), while
the next two digits indicate the starting square of the piece that the
player wants to move. Finally, the last two digits specify the des-
tination square of the piece after the move is made. By utilizing
this Operation Code, users are able to input all possible moves in
a game of chess using only six digits.

Programming an interface

Once we achieved a basic parametrization of the game and we
ensured that for each position we had all possible moves, we pro-
ceeded to program an interface on which the different patterns and
methods could be implemented. To this end pygame was used in
order to simulate the different game. The interface consolidated
our understanding of how to play chess and how to test the algo-
rithms that we considered.

Using neural networks

One of the most important aspects of our work was to under-
stand how neural networks can be used in order to implement
a chess engine. We considered the basics of neural networks and
we posed the question of what is the simplest neural network that
can be used in order to create a virtual non-trivial chess player.
At this point, it should be noted that we have two examples of us-
ing neural networks in chess programming: the addition of neural
networks to the open source popular Stockfish engine and the very
advanced Alpha Zero program which is entirely based on neural
networks. Our desire was to start from scratch. To this end we
considered the implementation of a convolutional neural network
that can be trained so as to play chess at a non-trivial level.

Evaluating a chess position

In a game of chess, certain pieces are considered stronger than
others. By assigning each piece on the board with a value, we can
know the strength of each pieces in chess. For example, pawns
are assigned a value of one point, while knights and bishops are
assigned with a value of three points. By calculating the values
of all the pieces on the board and evaluating the game state ac-
cordingly, the chess program can utilize the minimax algorithm
to look forward in the decision tree and make decisions up to 20
moves ahead. It is worth noting that the computer program will
prioritize achieving checkmate over gaining material advantages,
and may even sacrifice pieces if doing so will lead to a checkmate
opportunity. In general, the process of evaluating a chess position
is paramount in every area of chess programming. In fact effi-
cient and effective evaluation is the key to program any playing
or training chess engine.

Procedural study of chess openings

Chess openings are the initial moves of a chess game that set the
stage for the rest of the game. They are crucial in determining the
strategic direction of the game and can significantly impact the
outcome. One of the paths that we took in our study is to look
at large databases of games and to explore how we can analyze
the different openings and come up with learning strategies. One
way to do this is to come up with trees of possibilities and classify
opening traps and opening blunders.

By importing the chess and stockfish libraries, the function plays
chess moves and evaluates the resulting board positions using the
Stockfish chess engine.

The code creates a chess board object using the chess.Board()
function. It also creates an instance of the Stockfish engine using
the Stockfish() class, passing the path to the Stockfish binary file
as an argument. The depth and skill level of the Stockfish engine
is set to 20 using the set depth() and set skill level() methods, re-
spectively. The current parameters of the Stockfish engine are
printed using the get parameters() method.

The function play pgn moves(pgn string) takes a PGN (Portable
Game Notation) string as input. The function splits the input PGN
string to extract the moves and iterates over the moves in pairs
using a for loop. Inside the loop, the code uses the board object to
make the moves on the chess board using the push san() method,
which pushes the moves in Standard Algebraic Notation (SAN)
format. After each move, the current board position is printed
using print(board).

The stockfish engine is then used to set the FEN (Forsyth-Edwards
Notation) position on the board using the set fen position()
method, and the evaluation score of the current position is ob-
tained using the get evaluation() method. The evaluation score
represents the advantage of the current position for the side to
move, with positive values indicating an advantage for White and
negative values indicating an advantage for Black. The evaluation
score is also printed using print(evaluation). Finally, the function
continues to the next move in the PGN string and repeats the pro-
cess until all moves are made on the board.

Zobrist hashing algorithm in chess programming

In chess, an efficient hashing table is needed when traversing a
decision tree without re-analyzing the board position each time.
One of the most common hashing algorithms in chess is Zobrist
Hashing. We implement Zobrist hashing by generating a random
integer key using a 64-bit number, multiplying it with 12 (which
stands for the number of individual pieces in chess), and then tak-
ing the random integer from the result. For each square on the
chessboard that is not empty, we then perform XOR on every
square that has a piece on the board, and return the total as the
hash value of the given position on the board.

This approach is extremely effective when used with the Mini-
max Algorithm. When traversing the decision tree, the value of
the position can be stored in the hash table and re-used later with-
out having to re-analyze the same position, which speeds up the
algorithm.

Algorithmic generation of chess problems

This branch involved algorithmically generating chess problems.
Chess problems are board positions, accompanied by a prompt,
such as ”Mate in 3 as White.” Here, we explored our main ap-
proach, one based on searching games.

In order to support the number of board positions that have to
be considered for both of these approaches, the chess problem
generator uses a unique chess engine implementation in the Rust
programming language. This system is generic over board size,
allows combining of pieces trivially and allows easy addition of
entirely new pieces, such as Berolina pawns. We had to focus
on performance, using bitflags for marking a piece’s movement
abilities, Zobrist hashing for transposition tables and aggressive
pruning when searching for a forced mate.

Our search-based algorithm generated chess games, by having the
computer play against itself, but with White having a more intel-
ligent AI. As a result, White always checkmated, giving a usable
final position. It then looked 2n−1 moves behind, for a mate-in-
n problem, so for a mate-in-3 problem, it’d be 5 moves behind.
It then checked if there was only one move resulting in a mate-
in-n and that it was not a capture, check or promotion. If so, it
was a valid puzzle. We called this method a search-based one
as it searches real games for a valid problem. Originally, it had
been intended to search historical games, but a high rate of draw-
ing and resignations as soon as an eventual mate became obvious
made that inefficient.

Here are three examples of such problems, where the goal is a
mate in 3 by White:

8 BZ0Zka0s
7 Z0Z0m0o0
6 RZ0Z0Z0Z
5 Z0o0O0Ap
4 0ZQZ0Z0Z
3 O0Z0Z0O0
2 0O0ZPZ0O
1 SNZ0J0Z0

a b c d e f g h

Solution: Here, White
should play 1 Qe6. No
matter how Black
responds, White will
deliver mate in three
moves.

8 rZ0j0Z0A
7 Z0ZpZpZ0
6 0O0O0Z0Z
5 o0o0Z0Z0
4 0Z0Z0ZpZ
3 O0Z0J0ZR
2 0O0ZPZPZ
1 ZNZ0ZBM0

a b c d e f g h

Solution: Here, white
should play 1 b7. Black
has to block the pawn’s
promotion, as a promotion
to a queen would be
checkmate. This allows 2
Bf6+ Ke8 3 Rh8#.

8 0Z0A0Z0Z
7 Z0Z0Z0Z0
6 BO0Z0MpZ
5 Z0Z0Z0Op
4 0j0ZPZ0O
3 Z0Z0J0ZR
2 0O0Z0Z0Z
1 Z0Z0S0M0

a b c d e f g h

Solution: White should
play 1 Kd4, which
regardless of what Black
plays, allows 2 Ra3+ Kb4
3 Nd5#. This problem
shows the substantial
imbalance in material we
sometimes see.


